The sum of Rademacher functions and Hausdorff dimension

نویسنده

  • TIAN-YOU HU
چکیده

For 0 < a < 1, let/a(x) = 2,1,2~ Ri(x) for 0 s$ x < 1, where {#,}£, is the sequence of Rademacher functions. We give a class of fa so that their graphs have Hausdorff dimension 2 —a. The result is closely related to the corresponding unsolved question for the Weierstrass functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the L-pointwise Regularity of Functions in Critical Besov Spaces

We show that the functions in L(R) given by the sum of infinitely sparse wavelet expansions are regular, i.e. belong to C∞ L2(x0), for all x0 ∈ R which is outside a set of vanishing Hausdorff dimension.

متن کامل

The Hausdorff dimension of pulse-sum graphs

We consider random functions formed as sums of pulses F (t) = ∞ ∑ n=1 n −α/D G(n(t−Xn)) (t ∈ R ) where Xn are independent random vectors, 0 < α < 1, and G is an elementary “pulse” or “bump”. Typically such functions have fractal graphs and we find the Hausdorff dimension of these graphs using a novel variant on the potential theoretic method.

متن کامل

Historic set carries full hausdorff dimension

‎We prove that the historic set for ratio‎ ‎of Birkhoff average is either empty or full of Hausdorff dimension in a class of one dimensional‎ ‎non-uniformly hyperbolic dynamical systems.

متن کامل

Rademacher Complexity

Rademacher complexity is a measure of the richness of a class of real-valued functions. In this sense, it is similar to the VC dimension. In fact, we will establish a uniform deviation bound in terms of Rademacher complexity, and then use this result to prove the VC inequality. Unlike VC dimension, however, Rademacher complexity is not restricted to binary functions, and will also prove useful ...

متن کامل

Rademacher averages and phase transitions in Glivenko-Cantelli classes

We introduce a new parameter which may replace the fat-shattering dimension. Using this parameter we are able to provide improved complexity estimates for the agnostic learning problem with respect to any norm. Moreover, we show that if fat ( ) = ( ) then displays a clear phase transition which occurs at = 2. The phase transition appears in the sample complexity estimates, covering numbers esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1989